Single crystal growth and magnetism of the novel U_2RhIn_8 compound

A. Bartha, M. Kratochvílová, V. Sechovský, and J. Custers 1

¹Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague

We report on the physical properties of the novel compound U_2RhIn_8 . Single crystals have been prepared for the first time using In self-flux method. The compound adopts the Ho_2CoGa_8 -type structure with lattice parameters a=4.6163 Å and c=12.0144 Å. In contrast to its nonmagnetic analog U_2RhGa_8 , U_2RhIn_8 orders antiferromagnetically below $T_N=117$ K with slightly enhanced Sommerfeld coefficient $\gamma=47$ mJ.mol⁻¹.K⁻². The behavior of U_2RhIn_8 strongly resembles that of related $URhIn_5$ with respect to magnetization and resistivity. The susceptibility $\chi(T)$ reveals strong anisotropy with effective magnetic moment corresponding roughly the free U ion. Additionally, an unusually large Curie temperature is found, reaching almost -800 K for $H \mid\mid a$. The weak temperature dependence of $\chi(T)$ might be attributed to the mainly itinerant nature of 5f electrons. Magnetic field leaves the evolution of T_N unaffected up to 14T, but T_N is enhanced upon applying hydrostatic pressure. The overall phse diagram will be discussed in the context of magnetism in $URhX_5$ and UX_3 (X=In, Ga).