General information

Equipment

  • NIR - FT - Raman spectrometer (IFS 66 FRA 106, Bruker)
  • Raman microscope with helium cryostat - financed by the Foundation for Polish Science, 1996.
  • Equipment for dielectric spectroscopy in frequency range 10 - 109 Hz and temperature range 10 - 500 K.
  • Equipment for electric conductivity measurements from d.c. to 109 Hz.
  • Equipment for optical study in temperature range 70 - 870 K (Linkam).
  • Differential scanning calorimeter - Netzsch DSC 200
    Aparatura do spektroskopii dielektrycznej w zakresie częstości 10 - 109 Hz oraz temperatury 10 - 500 K

    Phot.1 Equipment for dielectric spectroscopy in frequency range 10 - 109 Hz and temperature range 10 - 500 K.

  • Ball-mill Pulverisette 6, Fritsch
    Młyn kulowy
    Phot. 2 Ball-mill
    Naczynie z kulami

Cooperation

Research

Scientific Problems

The mission of the Department of Ferroelectrics is:

  • study of electric and magnetic materials including ferroics nanomaterials, ferroelectrics, multiferroics, ionic and superprotonic conductors by means of high-frequency dielectrometry method and magnetometric methods (VSM magnetometer, AC susceptometer)
  • characterization of morphology, structure and composition of these materials using electron microscopy (SEM, TEM, SAED, EDS), X-ray diffraction
  • synthesis of materials and nanomaterials by means of mechanical alloying and microwave activated hydrothermal reaction method.

The general aim of researches is manufacturing of new ferroic and multiferroics materials, getting knowledge about theirs properties, and explaining mechanisms of electric transport in fast ion conductors and polymers.

Rys. 1 Wpływ efektu rozmiarowego na właściwości magnetyczne żelazianu bizmutu BiFeO3
Fig.1 Influence of size effect on magnetic properties of bismuth ferrite BiFeO3

Researches of ferroics including M-hexaferrites Sr(Ba)Fe12O19 and of BiFeO3 multiferroics are aimed at synthesis of new materials (by means of mechanosynthesis or by hydrothermal synthesis) and explaining the influence of morphology and doping with Nd3+, Al3+, Sc3+, … ions on theirs magnetoelectric properties.

The researches concern also magnetic orderings in large systems of magnetic nanoparticles like, for example, Fe3O4@SiO2 magnetite particles in silica shell and investigations of conducting properties of LiMn2O4 doped ceramics.

In the case of fast ion conductors the studies are aimed at getting basic knowledge about electric transport mechanisms, phase transitions and physical properties of new organic compounds like, for example, new ferroelectrics [C(NH2)3]4X2SO4 (X=Cl, Br) or [C(NH2)3]4Cl2SO4 and (NH4)4H2(SeO4)2 crystals. Similar studies are performed for [(CH3)2CHCH2]NHSO4 compound with hyper polarized organic cathions.

Badanie własności elektrycznych i magnetycznych materiałów oraz nanomateriałów ferroicznych, M-heksaferrytów, multiferroików, ferroelektryków oraz przewodników jonowych i superprotonowych metodami wysokoczęstościowej dielektrometrii oraz magnetometrii (magnetometr z wibrującą próbką VSM, podatnościomierz AC), charakteryzowanie: morfologii, składu i struktury tych materiałów za pomocą mikroskopii elektronowej (SEM, TEM, SAED, EDS), dyfrakcji rentgenowskiej, oraz wytwarzanie materiałów i nanomateriałów metodą mechanosyntezy i mikrofalowo aktywowanej syntezy hydrotermalnej.

Fig 2 Various forms of bismuth ferrite BiFeO<sub>3</sub> micro- and nanocrystals (synthesis performed by dr. Katarzyna Chybczyńska). Fig 4 Various forms of bismuth ferrite BiFeO<sub>3</sub> micro- and nanocrystals (synthesis performed by dr. Katarzyna Chybczyńska) Fig 4 Various forms of bismuth ferrite BiFeO<sub>3</sub> micro- and nanocrystals (synthesis performed by dr. Katarzyna Chybczyńska) Fig 5 Various forms of bismuth ferrite BiFeO<sub>3</sub> micro- and nanocrystals (synthesis performed by dr. Katarzyna Chybczyńska)

Figs 2-5 Various forms of bismuth ferrite BiFeO3 micro- and nanocrystals (synthesis performed by dr. Katarzyna Chybczyńska).

Cooperation

  • Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
  • Institute of Solid State Physics, Solid States Electrolytes Department, Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Northern Illinois University, DeKalb, USA
  • University of Latvia, Riga, Latvia
  • Adam Mickiewicz University in Poznan
  • Institute of Electronic Materials Technology, Warszawa
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw
  • Institute of Nonferrous Metals, Gliwice
  • Institute of Plant Protection, National Research Institute, Poznań
  • NanoBioMedical Centre, Adam Mickiewicz University in Poznań
  • Pedagogical University of Cracow
  • Poznan University of Medical Sciences
  • Poznan University of Technology
  • Rzeszow University of Technology
  • University of Opole

Research

Research carried out in our Laboratory concern mechanisms of formation and stabilization of liquid crystal phases. In particular the analysis of the influence of many different factors (such as electric field, temperature, defects, polymer additives and surface interactions) on the physical properties of liquid crystals is performed. Our investigations include also the development of computer simulation methods to study soft matter particle systems.

The systems under investigation are such different mezophases as: nematics, smectics, cholesterics, frustrated chiral phases (TGB, BP), ferroelectric and antiferroelectric smectics, as well as cellulose-based liotropic superstructures. Investigations are focused on the description of structural, thermodynamic, optical, dielectric, electro-optic and visco-elastic properties of these phases as a function of frequency and strength of electric field, composition of material and temperature. Moreover, the modelling of the soft matter and simple liquids with computer simulation techniques (in particular, Molecular Dynamics MD, Brownian Dynamics BD, Monte Carlo MC) is carried out.

Examples of realized tasks

  1. Structural, dielectric, visco-elastic and electro-optic properties of chiral liquid crystals (blue phases especially)
  2. Self-organization in the systems of soft matter (liquid crystals, colloids)
  3. Nonlinear dynamic effects in surface-stabilized liquid crystals
  4. The influence of surface interactions on the physical properties of thin smectic liquid crystals
  5. Development of computer simulations methods (MD, BD, MC): deterministic thermostats and simulations of strongly confined particle systems
  6. Simulations of structural, thermodynamic and dynamic properties of soft matter and simple liquids systems
  7. Investigation of layered LC/cellulose-type structures

Research projects

  • The statutory project (2016 - 2018) - Physical properties of thin liquid crystal films - dr hab. A.C. Brańka, prof. IFM PAN
  • NCN project (OPUS 13) - Elastic properties of liquid crystal blue phases (2018 - 2021), project leader - dr hab. A.C. Brańka, prof. IFM PAN
  • NCN project (MINIATURA 1) - Preparation and characterization of nanocrystalline cellulose/liquid crystal systems (2017/2018), project leader -  dr inż. N. Bielejewska
  • Participation in the LIDER project (Edition VII) carried out by the Wood Technology Institute - New biopolymer adhesives modified with silanes and ionic liquids for application in wood-based materials technology (2017 - 2019), main worker/ investigator - dr inż. N. Bielejewska
  • NCN project (OPUS 3) - Stationary states in spatially limited microscopic systems: acoustic micro-voids and stimulated microgel molecules in microchannels (2013 - 2016), project leader - dr hab. A.C. Brańka, prof. IFM PAN
  • MNiSW project - Identification of a new type of de Vries phase (2010 - 2014), project leader - dr hab. J. Hoffmann, prof. IFM PAN

Subcategories